缂冩垹鐝#鏍€� 閸忋劎鐝幖婊呭偍 閺傚洨鐝烽幒銊ㄥ礃 娴兼垿妫介弬鍥ㄦ喅 楠炰粙绮幖鐐电懅 閻㈢喐妞块悙瑙勬樊 娴兼垿妫芥繛鍙樼 缂冩垹鐝崷鏉挎禈 缁讳線鐝ㄦ稉顓熸瀮閵嗏偓
 
閸庢帊浜掓穱顔块煩 閸庢帒顒熼崚婵囧赴 閸庢帒顒熷ǎ杈┾敀 缁辩娀顥ら崑銉ユ倣 閹存帗娼冮弨鍓ф晸 閼割剝瀚㈡禍铏规晸 閸嬨儱鎮嶆稊锔剧潉 閸犲嫪鍔熼幒銊ㄥ礃 閸忚崵鏁撴稊瀣壕
鐠侀缚顕㈢拋鑼额洣閵嗏偓鐎涚喎鐡欓弮渚€鈧拷閵嗏偓闁挸鐥夌紒蹇毿�閵嗏偓婢堆冾劅鐠佽尪顔�閵嗏偓娑擃厼鐒婄拋鎻掔秿閵嗏偓鐎涙繄绮″▔銊ㄐ�閵嗏偓閺嶈壈鈻堥懕鏃傛導閵嗏偓娴硷妇鎮婇悽鐔告た閵嗏偓鐎瑰爼顥撶€规儼顔�閵嗏偓閼匡拷 閺嶏拷 鐠嬶拷閵嗏偓娣囷拷 鐎碉拷 濞夛拷閵嗏偓娴滃棗鍤掗崶娑滎唲
正文 < 数学趣闻集锦 < 百科全书 < 首页 :当前 
閻╋拷 閸忥拷 娑擄拷 妫帮拷 閻╋拷 瑜帮拷
鐠侀缚顕�鐎涚喎鐡�閵嗏偓娑擃厼鐒�婢堆冾劅閵嗏偓閺勬挾绮¢弬鍥у
閸氭稑鐡欐稊瀣壕閵嗏偓閻炲棗顒熻箛鍐劅閵嗏偓娑擃厼鐒婇幀婵囧厒
閸樺棔鍞径褍鍓�閵嗏偓娣囶喛闊╁▔鏇☆嚔閵嗏偓鐎瑰爼顥撶€规儼顔�
閸庢帒顒熼崚婵囧赴閵嗏偓閸庢帒顒熸稉顓濇叏閵嗏偓閸庢帒顒熷ǎ杈┾敀
閸庢帗鏆€閸濇彃顒�閵嗏偓閸庢帒顒熼崗鍛婃櫊閵嗏偓鐎涙繃鍊㈣箛鐘变繆
妫版粍鐨€规儼顔�閵嗏偓鐞氫焦鐨稉鏍瘱閵嗏偓婢跺嫪绗橀幃顒勬殔
鐠侀缚顕㈤崚顐ヮ梿閵嗏偓鐎涚喎鐡欓弮渚€鈧拷閵嗏偓婢堆冾劅瀵邦喛鈻�
閸涖劍妲楃粋鍛靶�閵嗏偓鐎瑰妲戦悶鍡楊劅閵嗏偓闂冭櫕妲戣箛鍐劅
娑擃厼鐒婄拋鑼额唶閵嗏偓鐠侀缚顕㈤梿鍡樻暈閵嗏偓鐢摜銇滄稉鎹愵洣
鐎涙柨鐡欑€规儼顕�閵嗏偓鐎涙繄绮$憴锝夊櫞閵嗏偓娣囨繆闊╃粩瀣嚒
缁辩娀顥ら崑銉ユ倣閵嗏偓娣囶喚顩存穱婵嗘嚒閵嗏偓鐎涙繀绗岄幋鎺撳竼
閺€鍓ф晸闂傤喚鐡�閵嗏偓閺€鍓ф晸瀵偓缁€锟�閵嗏偓閻濆秶鍩嶉悽鐔锋嚒
閺傚洤顒熼弫鍛皑閵嗏偓閺嬫绔婚悳鍕肠閵嗏偓鐎规鏆€閺佸懍绨�
閸濊尙鎮婇弫鍛皑閵嗏偓閻╁﹥娅ら弫鍛皑閵嗏偓缂囧骸鐥夐弫鍛皑
鐎硅泛娑垫穱婵嗕淮閵嗏偓閸嬨儱鎮嶆稊瀣壕閵嗏偓閸ユ稑顒滈崗鑽ゆ晸
韫囧啰鎮�閼奉亞鏋�閵嗏偓閻ゅ墽姊�妞嬬喓鏋�閵嗏偓缁岀繝缍�閹稿鎳�
缂囧骸顔�閻︼箒闊�閵嗏偓閸嬨儴闊�缁夋ḿ鐫�閵嗏偓閼哄崬宕�閻у墽顫�
閸斿崬绻旀禍铏规晸閵嗏偓閺冨懏鐖�鐡掞綀鐨�閵嗏偓鐏炲懎顔嶇€规繂鍚€


蜘蛛与苍蝇问题
类别:数学天地 作者: ( 鐎涙褰�: 閸楋拷閵嗏偓閸楋拷 )

H·E·杜登尼是19 世纪英国知名的谜题创作者.在今天大多数的谜题书上都有他的杰作,只是他常常没有得到他应有的赞誉.公元1890年,他与美国著名的谜题专家山姆·洛依德合作发表了一系列谜题文章。

杜登尼的第一本书《坎特伯雷谜题集》出版于1907年,此后又陆续出版了五本,它们为数学智力问题留下了一笔财富。

“蜘蛛和苍蝇”问题最早出现在1903年的英国报纸上,它是杜登尼最有名的谜题之一:

在一个30′X 12′ X 12′的长方体房间,一只蜘蛛在一面墙的中间离天花板1 英尺的地方.

苍蝇则在对墙的中间离地板1 英尺的地方.苍蝇是如此害怕,以至于无法动弹。

试问,蜘蛛为了捉住苍蝇需要爬的最短的距离是多少?(提示: 它少于42′)

(见附录“蜘蛛与苍蝇”的解答)

数学与肥皂泡

哪一类数学概念与肥皂泡相联系呢? 肥皂泡膜的形状是受表面张力的控制.表面张力总是使表面积尽可能地小.由于每个肥皂泡里都包封住了一定量的空气,结果由于这一定量的空气,使得表面积的减少有了一个最低的限度.这就解释了为什么单个的肥皂泡总是变成球状的,而一大堆肥皂泡集在一起便有不同的造形.在肥皂泡沫中,肥皂泡的边缘之间交成120°,这称为三部接合.在一个三部接合点,有三条线段相会,各各交成120°角.许多自然现象(一些例子如鱼的鳞、香蕉的内部、玉米仁的构造、海龟壳等等)也都遵从三部接合的规律,接合点则为自然界的均衡点。

下页:中国的计算板


| 閻楀牊娼堟竟鐗堟 | 閸欏鍎忛柧鐐复 | 鐠佸彞璐熸#鏍€� | 閸旂姴鍙嗛弨鎯版 | 閻f瑨鈻堝楦款唴 | 閸忓厖绨張顒傜彲 |
閼割剝瀚㈡禍铏规晸缂冩嚙鐤焽閼汇儱顕遍懜锟� 閻楀牊娼堥幍鈧張锟�
Copyright © 2023 mifang.org All rights reserved.
鏉堢祤CP婢讹拷05000881閸欙拷-1