缂傚倸鍟崹褰掓偟椤栨冻绱旈柡宥庡幑閳ь剨鎷� 闂佺ǹ绻堥崝搴ㄦ偟椤栫偛绠规繝濠傛噹閸嬶拷 闂佸搫鍊稿ú銊╂偟閻戣棄绠抽柕濞垮妼缁€锟� 婵炴潙鍚嬮崹鍨涙禒瀣闁搞儯鍔嶉崰锟� 濡ょ姷鍋樼划娆戝垝椤栫偛绠归柣鎰暩閹筹拷 闂佹眹鍨婚崰鎰渻閸ф鍊烽悷娆忓濡拷 婵炴潙鍚嬮崹鍨涢懞銉х闁告瑦岣块锟� 缂傚倸鍟崹褰掓偟椤栫偛鎹堕柡澶嬪缁傦拷 缂備浇顔婄欢姘舵偟閵婏妇鈻旀い鎾跺枑閻庯拷闂侀潧妫岄崑锟�
 
闂佺ǹ瀛╃敮濠冪閹烘挾鈹嶆い鏂挎健閻擄拷 闂佺ǹ瀛╃敮鎺楊敆閻旂厧绀嗘繝闈涙搐鐠э拷 闂佺ǹ瀛╃敮鎺楊敆閻旈潪搴㈡綇閳圭偓鏅� 缂備浇浜繛鈧い銉e€濆畷鎴﹀Ψ閵夛箑鈧拷 闂佺懓鐡ㄧ敮妤€岣块崘顔肩哗闁告挆鍕 闂佺厧澹婇崜婵堚偓姘ュ灪缁傚秹鎼圭憴鍕 闂佺ǹ顑冮崕閬嶅箖瀹ュ棛鈻曢柨鏂垮⒔濞硷拷 闂佸摜濮寸€氼亪宕濋悢鐓庣闁靛ǹ鍔岀粈锟� 闂佺ǹ绻楀畷鐢稿极閹惧鈻曢悗锝庡枙婢癸拷
闁荤姳绶氱紓姘额敋閵忋垺濯奸柤濂割杺濞诧拷闂侀潧妫岄崑锟�闁诲孩绋撻崰搴ㄦ偤濞嗘挸绫嶅〒姘e亾闁逞屽墾閹凤拷闂侀潧妫岄崑锟�闂備緡鍓氶幐鎼佹儉婢跺瞼纾奸煫鍥嚧閿燂拷闂侀潧妫岄崑锟�婵犮垹鐖㈤崘鎯уΤ闁荤姳娴囩亸顏堫敊閿燂拷闂侀潧妫岄崑锟�婵炴垶鎼╅崢濂告倿婵犲嫭濯奸柟缁樺笧缁夛拷闂侀潧妫岄崑锟�闁诲孩绋掔换鍕垝閳ユ枼鏋栭柕濞垮壉閿燂拷闂侀潧妫岄崑锟�闂佸搫绉锋竟鍫ュ煝閸儲鍤傞柡鍐ㄥ€圭亸锟�闂侀潧妫岄崑锟�婵炲銆嬫俊鍥箖婵犲洦鍋ㄩ柣鏂挎啞閵囷拷闂侀潧妫岄崑锟�闁诲海鎳撻悥濂杆夐幘鍨涘亾鐟欏嫬鍔舵い鏃撴嫹闂侀潧妫岄崑锟�闂佺厧灏呴幏锟� 闂佸搫绋勯幏锟� 闁荤姴顑戦幏锟�闂侀潧妫岄崑锟�婵烇絽娴勯幏锟� 闁诲海顣幏锟� 濠电偛顧€閹凤拷闂侀潧妫岄崑锟�婵炲瓨绮屽Λ妤呭吹閹烘鐐婃繛鎴炵矤閸烇拷
正文 < 仿生科学 < 百科全书 < 首页 :当前 
闂佺儵鏅幏锟� 闂佺ǹ楠忛幏锟� 婵炴垶鎼幏锟� 婵☆偄搴滈幏锟� 闂佺儵鏅幏锟� 閻熸粌搴滈幏锟�
闁荤姳绶氱紓姘额敋閿燂拷闁诲孩绋撻崰搴ㄦ偤閿燂拷闂侀潧妫岄崑锟�婵炴垶鎼╅崢濂告倿閿燂拷婵犮垹鐖㈤崘鎯уΤ闂侀潧妫岄崑锟�闂佸搫瀚幐鍓у垝閿熺姴妫橀柛銉戝喚鍤�
闂佸憡纰嶇粙鎴︽偤濞嗘劗鈻曢悗锝庡枙婢癸拷闂侀潧妫岄崑锟�闂佽崵鍋涘Λ妤咁敆閻旇崵鐤€闁告劦鐓堥崝锟�闂侀潧妫岄崑锟�婵炴垶鎼╅崢濂告倿婵犲洤绠戞繝闈涙搐閸橈拷
闂佸憡锚濡棃宕浣哥窞鐟滃秹宕滈敓锟�闂侀潧妫岄崑锟�婵烇絽娴傞崰娑㈡閳轰讲鏋栭柡鍥f閸わ拷闂侀潧妫岄崑锟�闁诲海鎳撻悥濂杆夐幘鍨涘亾鐟欏嫬鍔舵い鏃撴嫹
闂佺ǹ瀛╃敮鎺楊敆閻旂厧绀嗘繝闈涙搐鐠э拷闂侀潧妫岄崑锟�闂佺ǹ瀛╃敮鎺楊敆閻斿摜鈻旀い鎾寸箖閸欙拷闂侀潧妫岄崑锟�闂佺ǹ瀛╃敮鎺楊敆閻旈潪搴㈡綇閳圭偓鏅�
闂佺ǹ瀛╃敮妤呭汲閳ь剟鏌涘┑鍥х祷妞ゆ帪鎷�闂侀潧妫岄崑锟�闂佺ǹ瀛╃敮鎺楊敆閻旂厧绀傞柛娑橈攻濞咃拷闂侀潧妫岄崑锟�闁诲孩绋掔换鍐磹閵忥絿鐤€闁绘ê褰夌换锟�
婵☆偆澧楃划宥夋儍椤掑倵鍋撶憴鍕姸妞ゆ棑鎷�闂侀潧妫岄崑锟�闁荤偞鐭悞锕傛儍椤掍胶鈻旈柡宥庡墮閻︼拷闂侀潧妫岄崑锟�婵犮垼娉涚€氼亞绮鈧獮鍐敆閸曨剚鐣�
闁荤姳绶氱紓姘额敋閵忋倕绀嗘い鎰╁労濮婏拷闂侀潧妫岄崑锟�闁诲孩绋撻崰搴ㄦ偤濞嗘挸绫嶅〒姘e亾闁逞屽墾閹凤拷闂侀潧妫岄崑锟�婵犮垹鐖㈤崘鎯уΤ閻庣敻鍋婇崰娑㈠煝閿燂拷
闂佸憡绋忛崝宥呂eΔ鍐焿闁告盯婢忛敓锟�闂侀潧妫岄崑锟�闁诲海鎳撻鍡椢i幋锔藉仩闁糕剝顨忛崝锟�闂侀潧妫岄崑锟�闂傚倸鍟冲▍鏇炍i幋锝囩杸闁告劦鐓堥崝锟�
婵炴垶鎼╅崢濂告倿婵犲嫭濯奸柤濂割杺閸烇拷闂侀潧妫岄崑锟�闁荤姳绶氱紓姘额敋閵忋倖鈷栭柛鈩兩戦弳锟�闂侀潧妫岄崑锟�闁汇埄鍨伴幗婊堝Φ濠婂嫮鈻旈柟瑙勫姦濞诧拷
闁诲孩绋掗弻銊╂偤濞嗘垟鍋撶憴鍕姸妞ゆ洩鎷�闂侀潧妫岄崑锟�闁诲孩绋掔换鍕垝閿涘嫭鍠嗛柨婵嗩槸濞咃拷闂侀潧妫岄崑锟�婵烇絽娲︾换鍡涙閳哄啰鍗氶悗锝庝簼閸わ拷
缂備浇浜繛鈧い銉e€濆畷鎴﹀Ψ閵夛箑鈧拷闂侀潧妫岄崑锟�婵烇絽娴傞崰姘躲€呯€涙ḿ鈹嶆繝闈涙閸わ拷闂侀潧妫岄崑锟�闁诲孩绋掔换鈧紒妤€鐭傞獮瀣箳閹惧磭顏�
闂佽 鍋撻柛鎾楀嫭娅㈤梻鍌氬亞閸犳岸鎮洪敓锟�闂侀潧妫岄崑锟�闂佽 鍋撻柛鎾楀嫭娅㈤悗娈垮枓閸嬫挾绱掗埀顒勬晸閿燂拷闂侀潧妫岄崑锟�闂佺粯绻傜粔鍫曞春瀹ュ鍋ㄩ柣鏃堟敱閸わ拷
闂佸搫鍊稿ú銈夘敆閻旂厧鏋侀柛娑卞墰閻拷闂侀潧妫岄崑锟�闂佸搫顑嗛〃鍡欑博婵犳碍鍋濋柛鏇ㄥ灡閼诧拷闂侀潧妫岄崑锟�闁诲氦顫夐〃鍡涘汲閳ь剟鏌℃担鍛婂櫢缂侇煉鎷�
闂佸憡绻嗙亸娆撳箖婵犲洤鏋侀柛娑卞墰閻拷闂侀潧妫岄崑锟�闂佺儵鏅涢敃銉モ枍閵堝鏋侀柛娑卞墰閻拷闂侀潧妫岄崑锟�缂傚倸娲ゆ鎼佹儉婢舵劕鏋侀柛娑卞墰閻拷
闁诲海顢婂▔娑樷槈閸偆鈹嶆繝闈涙濞o拷闂侀潧妫岄崑锟�闂佺ǹ顑冮崕閬嶅箖瀹ュ棛鈻曢悗锝庡枙婢癸拷闂侀潧妫岄崑锟�闂佹悶鍎茬粙鎴︻敆濠婂牆绀傞柤濮愬€栭弲锟�
闂婎偄娲ら崯浼村箖閿燂拷闂佺厧顨庢禍鐐哄几閿燂拷闂侀潧妫岄崑锟�闂佹眹鍊曟晶钘夘潖閿燂拷婵$偛顑囬崰鎾诲几閿燂拷闂侀潧妫岄崑锟�缂備礁鐬肩换婵堢礊閿燂拷闂佸湱枪椤︿即骞婇敓锟�
缂傚倸娲ゆ鎼侇敊閿燂拷闂佷紮璁g粻鎺楁閿燂拷闂侀潧妫岄崑锟�闂佺ǹ顑冮崕鎾閿燂拷缂備礁顦板玻鍧楁儓閿燂拷闂侀潧妫岄崑锟�闂佺厧鎼畷顒€鐣烽敓锟�闂佽皫鍐ㄢ挃妞ゎ偓鎷�
闂佸憡鏌ㄥ畷顒傛崲閺冣偓缁傚秹鎼圭憴鍕闂侀潧妫岄崑锟�闂佸搫鍟幊蹇涙偉閿燂拷闁烩剝甯紞鈧柣顭掓嫹闂侀潧妫岄崑锟�闁诲繒鍋涢幊搴敊瀹ュ洠鍋撶憴鍕畵闁告埃鍋�


人工神经网络
来源:世界科技百科 作者: ( 闁诲孩绋掗〃鍛般亹閿燂拷: 闂佸憡顨愰幏锟�闂侀潧妫岄崑锟�闂佸憡顨愰幏锟� )

“人脑是如何工作的? ”

“人类能否制作模拟人脑的人工神经元? ”

多少年以来,人们从医学、生物学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度企图认识并解答上述问题.在寻找上述问题答案的研究过程中,近年来逐渐形成了一个新兴的多学科交叉技术领域,称之为“神经网络”.神经网络的研究涉及众多学科领域,这些领域互相结合、相互渗透并相互推动.不同领域的科学家又从各自学科的兴趣与特色出发,提出不同的问题,从不同的角度进行研究。

心理学家和认知科学家研究神经网络的目的在于探索人脑加工、储存和搜索信息的机制,弄清人脑功能的机理,建立人类认知过程的微结构理论.生物学、医学、脑科学专家试图通过神经网络的研究推动脑科学向定量、精确和理论化体系发展,同时也寄希望于临床医学的新突破;信息处理和计算机科学家研究这一问题的目的在于寻求新的途径以解决目前不能解决或解决起来有极大困难的大量问题,构造更加逼近人脑功能的新一代计算机。

人工神经网络是由大量的简单基本元件——神经元相互联接而成的自适应非线性动态系统.每个神经元的结构和功能比较简单,但大量神经元组合产生的系统行为却非常复杂。

人工神经网络反映了人脑功能的若干基本特性,但并非生物系统的逼真描述,只是某种模仿、简化和抽象。

与数字计算机比较,人工神经网络在构成原理和功能特点等方面更加接近人脑,它不是按给定的程序一步一步地执行运算,而是能够自身适应环境、总结规律、完成某种运算、识别或过程控制。

人工神经元的研究起源于脑神经元学说.19 世纪末,在生物、生理学领域,Waldeger 等人创建了神经元学说.人们认识到复杂的神经系统是由数目繁多的神经元组合而成.大脑皮层包括有100 亿个以上的神经元,每立方毫米约有数万个,它们互相联结形成神经网络,通过感觉器官和神经接受来自身体内外的各种信息,传递至中枢神经系统内,经过对信息的分析和综合,再通过运动神经发出控制信息,以此来实现机体与内外环境的联系,协调全身的各种机能活动。

神经元也和其他类型的细胞一样,包括有细胞膜、细胞质和细胞核.但是神经细胞的形态比较特殊,具有许多突起,因此又分为细胞体、轴突和树突三部分.细胞体内有细胞核,突起的作用是传递信息.树突是作为引入输入信号的突起,而轴突是作为输出端的突起,它只有一个。

树突是细胞体的延伸部分,它由细胞体发出后逐渐变细,全长各部位都可与其他神经元的轴突未稍相互联系,形成所谓“突触”.在突触处两神经元并未连通,它只是发生信息传递功能的结合部,联系界面之间间隙约为□(15-50)×10-9 米.突触可分为兴奋性与抑制性两种类型,它相应于神经元之间耦合的极性.每个神经元的突触数目正常,最高可达105 个.各神经元之间的连接强度和极性有所不同,并且都可调整、基于这一特性,人脑具有存储信息的功能.利用大量神经元相互联接组成人工神经网络可显示出人的大脑的某些特征.下面通过人工神经网络与通用的计算机工作特点来对比一下:

若从速度的角度出发,人脑神经元之间传递信息的速度要远低于计算机,前者为毫秒量级,而后者的频率往往可达几百兆赫.但是,由于人脑是一个大规模并行与串行组合处理系统,因而,在许多问题上可以作出快速判断、决策和处理,其速度则远高于串行结构的普通计算机.人工神经网络的基本结构模仿人脑,具有并行处理特征,可以大大提高工作速度。

人脑存贮信息的特点为利用突触效能的变化来调整存贮内容,也即信息存贮在神经元之间连接强度的分布上,存贮区与计算机区合为一体.虽然人脑每日有大量神经细胞死亡(平均每小时约一千个),但不影响大脑的正常思维活动。

普通计算机是具有相互独立的存贮器和运算器,知识存贮与数据运算互不相关,只有通过人编出的程序使之沟通,这种沟通不能超越程序编制者的预想.元器件的局部损坏及程序中的微小错误都可能引起严重的失常。

人类大脑有很强的自适应与自组织特性,后天的学习与训练可以开发许多各具特色的活动功能.如盲人的听觉和触觉非常灵敏;聋哑人善于运用手势;训练有素的运动员可以表现出非凡的运动技巧等等。

普通计算机的功能取决于程序中给出的知识和能力.显然,对于智能活动要通过总结编制程序将十分困难。

人工神经网络也具有初步的自适应与自组织能力.在学习或训练过程中改变突触权重值,以适应周围环境的要求.同一网络因学习方式及内容不同可具有不同的功能.人工神经网络是一个具有学习能力的系统,可以发展知识,以致超过设计者原有的知识水平.通常,它的学习训练方式可分为两种,一种是有监督或称有导师的学习,这时利用给定的样本标准进行分类或模仿;另一种是无监督学习或称无为导师学习,这时,只规定学习方式或某些规则,则具体的学习内容随系统所处环境(即输入信号情况)而异,系统可以自动发现环境特征和规律性,具有更近似人脑的功能。

人工神经网络早期的研究工作应追溯至本世纪40年代.下面以时间顺序,以著名的人物或某一方面突出的研究成果为线索,简要介绍人工神经网络的发展历史。

1943年,心理学家W·Mcculloch 和数理逻辑学家W·Pitts 在分析、总结神经元基本特性的基础上首先提出神经元的数学模型.此模型沿用至今,并且直接影响着这一领域研究的进展.因而,他们两人可称为人工神经网络研究的先驱。

1945年冯·诺依曼领导的设计小组试制成功存储程序式电子计算机,标志着电子计算机时代的开始.1948年,他在研究工作中比较了人脑结构与存储程序式计算机的根本区别,提出了以简单神经元构成的再生自动机网络结构.但是,由于指令存储式计算机技术的发展非常迅速,迫使他放弃了神经网络研究的新途径,继续投身于指令存储式计算机技术的研究,并在此领域作出了巨大贡献.虽然,冯·诺依曼的名字是与普通计算机联系在一起的,但他也是人工神经网络研究的先驱之一。

50年代末,F·Rosenblatt 设计制作了“感知机”,它是一种多层的神经网络.这项工作首次把人工神经网络的研究从理论探讨付诸工程实践.当时,世界上许多实验室仿效制作感知机,分别应用于文字识别、声音识别、声纳信号识别以及学习记忆问题的研究.然而,这次人工神经网络的研究高潮未能持续很久,许多人陆续放弃了这方面的研究工作,这是因为当时数字计算机的发展处于全盛时期,许多人误以为数字计算机可以解决人工智能、模式识别、专家系统等方面的一切问题,使感知机的工作得不到重视;其次,当时的电子技术工艺水平比较落后,主要的元件是电子管或晶体管,利用它们制作的神经网络体积庞大,价格昂贵,要制作在规模上与真实的神经网络相似是完全不可能的;另外,在1968年一本名为《感知机》的著作中指出线性感知机功能是有限的,它不能解决如异感这样的基本问题,而且多层网络还不能找到有效的计算方法,这些论点促使大批研究人员对于人工神经网络的前景失去信心.60年代末期,人工神经网络的研究进入了低潮。

另外,在60年代初期,Widrow 提出了自适应线性元件网络,这是一种连续取值的线性加权求和阈值网络.后来,在此基础上发展了非线性多层自适应网络.当时,这些工作虽未标出神经网络的名称,而实际上就是一种人工神经网络模型。

随着人们对感知机兴趣的衰退,神经网络的研究沉寂了相当长的时间.80年代初期,模拟与数字混合的超大规模集成电路制作技术提高到新的水平,完全付诸实用化,此外,数字计算机的发展在若干应用领域遇到困难.这一背景预示,向人工神经网络寻求出路的时机已经成熟.美国的物理学家Hopfield 于1982年和1984年在美国科学院院刊上发表了两篇关于人工神经网络研究的论文,引起了巨大的反响.人们重新认识到神经网络的威力以及付诸应用的现实性.随即,一大批学者和研究人员围绕着 Hopfield 提出的方法展开了进一步的工作,形成了80年代中期以来人工神经网络的研究热潮。

神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点.目前,主要的研究工作集中在以下几个方面:

(1)生物原型研究.从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。

(2)建立理论模型.根据生物原型的研究,建立神经元、神经网络的理论模型.其中包括概念模型、知识模型、物理化学模型、数学模型等。

(3)网络模型与算法研究.在理论模型研究的基础上构作具体的神经网络模型,以实现计算机馍拟或准备制作硬件,包括网络学习算法的研究.这方面的工作也称为技术模型研究。

(4)人工神经网络应用系统.在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人等等。

纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路.我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。

下页:人工创造新生物——遗传工程简介


| 闂佺粯顨呴悧濠傖缚閸喓鐝堕柣妤€鐗婇~锟� | 闂佸憡鐟ラ鍡涘磿韫囨稒鐓i柣鎰靛墮婢讹拷 | 闁荤姳绀佽ぐ鐐垫嫻閻旈潻绱旈柡宥庡幑閳ь剨鎷� | 闂佸憡姊绘慨鎾矗閸℃稑缁╅柟顖滃椤ワ拷 | 闂佷紮绲鹃悷銊╁煝閸繍鍤堝Δ锔筋儥閸烇拷 | 闂佺ǹ绻愰崢鏍姳椤掑嫬瀚夋い鎺戝€昏ぐ锟� |
闂佺厧澹婇崜婵堚偓姘ュ灪缁傚秹鎼圭憴鍕缂傚倸鍟崵娆撴偪椤栨氨鍔烽梺鍏肩湽閸庨亶顢氶柆宥嗗殝闁跨噦鎷� 闂佺粯顨呴悧濠傖缚閸儱绠ラ柍褜鍓熷鐢告晸閿燂拷
Copyright © 2023 mifang.org All rights reserved.
闁哄鐗忕粊顥㏄婵犮垼顔愰幏锟�05000881闂佸憡鐟遍幏锟�-1