缂傚啯鍨归悵顖涳純閺嶎厹鈧拷 闁稿繈鍔庨悵顖炲箹濠婂懎鍋� 闁哄倸娲ㄩ悵鐑藉箳閵娿劌绀� 濞村吋鍨垮Λ浠嬪棘閸ャ劍鍠� 妤犵偘绮欑划顖炲箹閻愮數鎳� 闁汇垻鍠愬鍧楁倷鐟欏嫭妯� 濞村吋鍨垮Λ鑺ョ箾閸欐ḿ顔� 缂傚啯鍨归悵顖炲捶閺夋寧绂� 缂佽绶氶悵銊︾▔椤撶喐鐎�闁靛棌鍋�
 
闁稿孩甯婃禍鎺撶┍椤斿潡鐓� 闁稿孩甯掗鐔煎礆濠靛洤璧� 闁稿孩甯掗鐔非庢潏鈹炬晙 缂佽京濞€椤ャ倝宕戦妷銉﹀€� 闁瑰瓨甯楀ḿ鍐绩閸撗勬櫢 闁煎壊鍓濈€氥垺绂嶉搹瑙勬櫢 闁稿鍎遍幃宥嗙▕閿斿墽娼� 闁哥姴瀚崝鐔煎箳閵娿劌绀� 闁稿繗宕甸弫鎾寸▕鐎n喕澹�
閻犱線缂氶銏㈡媼閼奸娲�闁靛棌鍋�閻庢稓鍠庨悺娆撳籍娓氣偓閳ь剨鎷�闁靛棌鍋�闂侇剚鎸搁惀澶岀磼韫囨锟�闁靛棌鍋�濠㈠爢鍐惧妳閻犱浇灏锟�闁靛棌鍋�濞戞搩鍘奸悞濠勬媼閹绘帞绉�闁靛棌鍋�閻庢稒绻勭划鈥斥枖閵娿剱锟�闁靛棌鍋�闁哄秷澹堥埢鍫ユ嚂閺冨倹灏�闁靛棌鍋�濞寸》濡囬幃濠囨偨閻斿憡銇�闁靛棌鍋�閻庣懓鐖奸ˉ鎾垛偓瑙勫劶椤旓拷闁靛棌鍋�闁煎尅鎷� 闁哄稄鎷� 閻犲鎷�闁靛棌鍋�濞e浄鎷� 閻庣鎷� 婵炲鎷�闁靛棌鍋�濞存粌妫楅崵鎺楀炊濞戞粠鍞�
正文 < 仿生科学 < 百科全书 < 首页 :当前 
闁烩晪鎷� 闁稿骏鎷� 濞戞搫鎷� 濡府鎷� 闁烩晪鎷� 鐟滃府鎷�
閻犱線缂氶锟�閻庢稓鍠庨悺锟�闁靛棌鍋�濞戞搩鍘奸悞锟�濠㈠爢鍐惧妳闁靛棌鍋�闁哄嫭鎸剧划锟犲棘閸パ冾嚙
闁告碍绋戦悺娆愮▕鐎n喕澹�闁靛棌鍋�闁荤偛妫楅鐔荤疀閸愵煈鍔�闁靛棌鍋�濞戞搩鍘奸悞濠囧箑濠靛洤鍘�
闁告ê妫旈崬顒佸緞瑜嶉崜锟�闁靛棌鍋�濞e浂鍠涢棅鈺佲枖閺団槅鍤�闁靛棌鍋�閻庣懓鐖奸ˉ鎾垛偓瑙勫劶椤旓拷
闁稿孩甯掗鐔煎礆濠靛洤璧�闁靛棌鍋�闁稿孩甯掗鐔哥▔椤撴繃鍙�闁靛棌鍋�闁稿孩甯掗鐔非庢潏鈹炬晙
闁稿孩甯楅弳鈧柛婵囧絻椤掞拷闁靛棌鍋�闁稿孩甯掗鐔煎礂閸涘﹥娅�闁靛棌鍋�閻庢稒绻冮崐銏g疀閻樺彉绻�
濡増绮嶉惃顒傗偓瑙勫劶椤旓拷闁靛棌鍋�閻炴矮鐒﹂惃顒佺▔閺嶎剙鐦�闁靛棌鍋�濠㈣泛瀚粭姗€骞冮鍕當
閻犱線缂氶銏ゅ礆椤愩儺姊�闁靛棌鍋�閻庢稓鍠庨悺娆撳籍娓氣偓閳ь剨鎷�闁靛棌鍋�濠㈠爢鍐惧妳鐎甸偊鍠涢埢锟�
闁告稏鍔嶅Σ妤冪矉閸涢澏锟�闁靛棌鍋�閻庣懓顑嗗Σ鎴︽偠閸℃鍔�闁靛棌鍋�闂傚啳娅曞Σ鎴g疀閸愵煈鍔�
濞戞搩鍘奸悞濠勬媼閼奸鍞�闁靛棌鍋�閻犱線缂氶銏ゆ⒖閸℃ɑ鏆�闁靛棌鍋�閻㈩垰鎽滈妵婊勭▔閹规劦娲�
閻庢稒鏌ㄩ悺娆戔偓瑙勫劶椤曪拷闁靛棌鍋�閻庢稒绻勭划锛勬喆閿濆娅�闁靛棌鍋�濞e洦绻嗛棅鈺冪博鐎n亝鍤�
缂佽京濞€椤ャ倝宕戦妷銉﹀€�闁靛棌鍋�濞e浂鍠氶々瀛樼┍濠靛棙鍤�闁靛棌鍋�閻庢稒绻€缁楀矂骞嬮幒鎾崇
闁衡偓閸撗勬櫢闂傚偆鍠氶悺锟�闁靛棌鍋�闁衡偓閸撗勬櫢鐎殿喒鍋撶紒鈧敓锟�闁靛棌鍋�闁绘繂绉堕崺宥夋偨閻旈攱鍤�
闁哄倸娲ら鐔煎极閸涱剛鐨�闁靛棌鍋�闁哄顨嗙粩濠氭偝閸曨垱鑲�闁靛棌鍋�閻庤顨嗛弳鈧柡浣告噸缁拷
闁告繆灏欓幃濠囧极閸涱剛鐨�闁靛棌鍋�闁烩晛锕ュ▍銈夊极閸涱剛鐨�闁靛棌鍋�缂傚洤楠搁惀澶愬极閸涱剛鐨�
閻庣娉涘☉鍨┍濠靛棔娣�闁靛棌鍋�闁稿鍎遍幃宥嗙▕鐎n喕澹�闁靛棌鍋�闁搞儲绋戦婊堝礂閼姐倖鏅�
闊洤鍟伴幃锟�闁煎浜為弸锟�闁靛棌鍋�闁汇倕澧藉锟�濡炲鍠撻弸锟�闁靛棌鍋�缂佸瞼绻濈紞锟�闁圭ǹ顦伴幊锟�
缂傚洤楠搁锟�闁伙讣绠掗棅锟�闁靛棌鍋�闁稿鍎撮棅锟�缂佸岣块惈锟�闁靛棌鍋�闁煎搫宕畷锟�闁谎冨⒔椤拷
闁告柨宕换鏃€绂嶉搹瑙勬櫢闁靛棌鍋�闁哄啫鎳忛悥锟�閻℃帪缍€閻拷闁靛棌鍋�閻忕偛鎳庨宥団偓瑙勭箓閸氣偓


连接生物与技术的桥梁
来源:世界科技百科 作者: ( 閻庢稒顨呰ぐ锟�: 闁告鎷�闁靛棌鍋�闁告鎷� )

自从瓦特(James Watt,1736-1819)在1782年发明蒸汽机以后,人们在生产斗争中获得了强大的动力.在工业技术方面基本上解决了能量的转换、控制和利用等问题,从而引起了第一次工业革命,各式各样的机器如雨后春笋般的出现,工业技术的发展极大地扩大和增强了人的体能,使人们从繁重的体力劳动解脱出来.随着技术的发展,人们在蒸汽机以后又经历了电气时代并向自动化时代迈进。

20 世纪40年代电子计算机的问世,更是给人类科学技术的宝库增添了可贵的财富,它以可靠和高效的本领处理着人们手头上数以万计的各种信息,使人们从汪洋大海般的数字、信息中解放出来,使用计算机和自动装置可以使人们在繁杂的生产工序面前变得轻松省力,它们准确地调整、控制着生产程序,使产品规格精确.但是,自动控制装置是按人们制定的固定程序进行工作的,这就使它的控制能力具有很大的局限性.自动装置对外界缺乏分析和进行灵活反应的能力,如果发生任何意外的情况,自动装置就要停止工作,甚至发生意外事故,这就是自动装置本身所具有的严重缺点.要克服这种缺点,无非是使机器各部件之间,机器与环境之间能够“通讯”,也就是使自动控制装置具有适应内外环境变化的能力.要解决这一难题,在工程技术中就要解决如何接受、转换.利用和控制信息的问题.因此,信息的利用和控制就成为工业技术发展的一个主要矛盾.如何解决这个矛盾呢? 生物界给人类提供了有益的启示。

人类要从生物系统中获得启示,首先需要研究生物和技术装置是否存在着共同的特性.1940年出现的调节理论,将生物与机器在一般意义上进行对比.到1944年,一些科学家已经明确了机器和生物体内的通讯、自动控制与统计力学等一系列的问题上都是一致的.在这样的认识基础上,1947年,一个新的学科——控制论产生了。

控制论(Cybernetics)是从希腊文而来,原意是“掌舵人”.按照控制论的创始人之一维纳(Norbef Wiener,1894-1964)给予控制论的定义是“关于在动物和机器中控制和通讯”的科学.虽然这个定义过于简单,仅仅是维纳关于控制论经典著作的副题,但它直截了当地把人们对生物和机器的认识联系在了一起。

控制论的基本观点认为,动物(尤其是人)与机器(包括各种通讯、控制、计算的自动化装置)之间有一定的共体,也就是在它们具备的控制系统内有某些共同的规律.根据控制论研究表明,各种控制系统的控制过程都包含有信息的传递、变换与加工过程.控制系统工作的正常,取决于信息运 行过程的正常.所谓控制系统是指由被控制的对象及各种控制元件、部件、线路有机地结合成有一定控制功能的整体.从信息的观点来看,控制系统就是一部信息通道的网络或体系.机器与生物体内的控制系统有许多共同之处,于是人们对生物自动系统产生了极大的兴趣,并且采用物理学的、数学的甚至是技术的模型对生物系统开展进一步的研究.因此,控制理论成为联系生物学与工程技术的理论基础.成为沟通生物系统与技术系统的桥梁。

生物体和机器之间确实有很明显的相似之处,这些相似之处可以表现在对生物体研究的不同水平上.由简单的单细胞到复杂的器官系统(如神经系统)都存在着各种调节和自动控制的生理过程.我们可以把生物体看成是一种具有特殊能力的机器,和其它机器的不同就在于生物体还有适应外界环境和自我繁殖的能力.也可以把生物体比作一个自动化的工厂,它的各项功能都遵循着力学的定律;它的各种结构协调地进行工作;它们能对一定的信号和刺激作出定量的反应,而且能像自动控制一样,借助于专门的反馈联系组织以自我控制的方式进行自我调节.例如我们身体内恒定的体温、正常的血压、正常的血糖浓度等都是肌体内复杂的自控制系统进行调节的结果.控制论的产生和发展,为生物系统与技术系统的连接架起了桥梁,使许多工程人员自觉地向生物系统去寻求新的设计思想和原理.于是出现了这样一个趋势,工程师为了和生物学家在共同合作的工程技术领域中获得成果,就主动学习生物科学知识。

下页:仿生学的诞生


| 闁绘鐗婂ḿ鍫熺珶閻楀牊顫� | 闁告瑥顑嗛崕蹇涙煣閻愵剙澶� | 閻犱礁褰炵拹鐔革純閺嶎厹鈧拷 | 闁告梻濮撮崣鍡涘绩閹増顥� | 闁伙絾鐟ㄩ埢鍫濐嚈妤︽鍞� | 闁稿繐鍘栫花顒勫嫉椤掑倻褰� |
闁煎壊鍓濈€氥垺绂嶉搹瑙勬櫢缂傚啯鍤欓悿顖氱劷闁兼眹鍎遍閬嶆嚋閿燂拷 闁绘鐗婂ḿ鍫ュ箥閳ь剟寮甸敓锟�
Copyright © 2023 mifang.org All rights reserved.
閺夊牏绁P濠㈣鎷�05000881闁告瑱鎷�-1