缃戠珯棣栭〉 鍏ㄧ珯鎼滅储 鏂囩珷鎺ㄨ崘 浼戦棽鏂囨憳 骞介粯鎼炵瑧 鐢熸椿鐐规淮 浼戦棽濞变箰 缃戠珯鍦板浘 绻侀珨涓枃銆€
 
鍎掍互淇韩 鍎掑鍒濇帰 鍎掑娣辩┒ 绱犻鍋ュ悍 鎴掓潃鏀剧敓 鑸嫢浜虹敓 鍋ュ悍涔︾睄 鍠勪功鎺ㄨ崘 鍏荤敓涔嬮亾
璁鸿璁茶銆€瀛熷瓙鏃侀€�銆€閬撳痉缁忚В銆€澶у璁茶銆€涓焊璁插綍銆€瀛濈粡娉ㄨВ銆€鏍艰█鑱旂挧銆€浼︾悊鐢熸椿銆€瀹堕瀹惰銆€鑿� 鏍� 璋�銆€淇� 瀵� 娉�銆€浜嗗嚒鍥涜
正文 < 数学趣闻集锦 < 百科全书 < 首页 :当前 
鐩� 鍏� 涓� 棰� 鐩� 褰�
璁鸿瀛熷瓙銆€涓焊澶у銆€鏄撶粡鏂囧寲
鍚涘瓙涔嬮亾銆€鐞嗗蹇冨銆€涓焊鎬濇兂
鍘嗕唬澶у剴銆€淇韩娉曡銆€瀹堕瀹惰
鍎掑鍒濇帰銆€鍎掑涓慨銆€鍎掑娣辩┒
鍎掓暀鍝插銆€鍎掑鍏告晠銆€瀛濇倢蹇犱俊
棰滄皬瀹惰銆€琚佹皬涓栬寖銆€澶勪笘鎮暅
璁鸿鍒銆€瀛熷瓙鏃侀€�銆€澶у寰█
鍛ㄦ槗绂呰В銆€瀹嬫槑鐞嗗銆€闃虫槑蹇冨
涓焊璁茶銆€璁鸿闆嗘敞銆€甯哥ぜ涓捐
瀛斿瓙瀹惰銆€瀛濈粡瑙i噴銆€淇濊韩绔嬪懡
绱犻鍋ュ悍銆€淇淇濆懡銆€瀛濅笌鎴掓帆
鏀剧敓闂瓟銆€鏀剧敓寮€绀�銆€鐝嶇埍鐢熷懡
鏂囧鏁呬簨銆€鏋楁竻鐜勯泦銆€瀹楁暀鏁呬簨
鍝茬悊鏁呬簨銆€鐩婃櫤鏁呬簨銆€缇庡痉鏁呬簨
瀹跺涵淇濆仴銆€鍋ュ悍涔嬮亾銆€鍥涘鍏荤敓
蹇冪悊鑷枟銆€鐤剧梾椋熺枟銆€绌翠綅鎸夋懇
缇庡鐦﹁韩銆€鍋ヨ韩绉樼睄銆€鑺卞崏鐧剧
鍔卞織浜虹敓銆€鏃呮父瓒h皥銆€灞呭瀹濆吀


三连环——一个拓扑学模型
类别:数学天地 作者: ( 瀛楀彿: 鍗�銆€鍗� )

如果移走一个环,会出现什么情况呢?

人体结构与黄金分割达·芬奇广泛研究了人类身体的各种比例.下面一张图画的是他对人体的详细研究.而且图中标明了黄金分割的应用.这是一张他为数学家L·帕西欧里的书《神奇的比例》所作的图解,该书出版于1509年。

黄金分割还出现在达·芬奇未完成的作品《圣徒杰罗姆》中.该画约作于公元1483年.在作品中,圣徒杰罗姆的像完全位于画上附加上的黄金矩形内.应当认为这不是偶然的巧合,而是达·芬奇有目的地使画像与黄金分割相一致.因为在达·芬奇的著作和思路中,处处表现出对数学应用的强烈兴趣.达·芬奇说过: “……没有什么能不通过人类的探求而称之为科学的,除非它是通过数学的解释和证明的途径.”

不可能的三接棍

许多图案和实例,一旦熟悉起来便觉得当然.在1958年英国的《心理学杂志》上,R·朋罗斯发表了他的不可能的三接棍。

他称之为立体的矩形构造: 三个直角显示出垂直,但它是不可能存在于空间的.这里三个直角似乎形成一个三角形,但三角形是一个平面而非立体的图形,它的三个角的和为180°,而非270°。

新近,朋罗斯推出了一种磁扭线的理论: 虽说磁扭是看不见的,但朋罗斯坚信,由于磁扭线之间的互相影响,空间和时间会绞扭在一起.你能说出为什么海哲的视觉幻影,从数学上讲也是不可能的?

下页:三人面墙问题


| 鐗堟潈澹版槑 | 鍙嬫儏閾炬帴 | 璁句负棣栭〉 | 鍔犲叆鏀惰棌 | 鐣欒█寤鸿 | 鍏充簬鏈珯 |
鑸嫢浜虹敓缃懧疯埇鑻ュ鑸� 鐗堟潈鎵€鏈�
Copyright © 2023 mifang.org All rights reserved.
杈絀CP澶�05000881鍙�-1