缂冩垹鐝#鏍€� 閸忋劎鐝幖婊呭偍 閺傚洨鐝烽幒銊ㄥ礃 娴兼垿妫介弬鍥ㄦ喅 楠炰粙绮幖鐐电懅 閻㈢喐妞块悙瑙勬樊 娴兼垿妫芥繛鍙樼 缂冩垹鐝崷鏉挎禈 缁讳線鐝ㄦ稉顓熸瀮閵嗏偓
 
閸庢帊浜掓穱顔块煩 閸庢帒顒熼崚婵囧赴 閸庢帒顒熷ǎ杈┾敀 缁辩娀顥ら崑銉ユ倣 閹存帗娼冮弨鍓ф晸 閼割剝瀚㈡禍铏规晸 閸嬨儱鎮嶆稊锔剧潉 閸犲嫪鍔熼幒銊ㄥ礃 閸忚崵鏁撴稊瀣壕
鐠侀缚顕㈢拋鑼额洣閵嗏偓鐎涚喎鐡欓弮渚€鈧拷閵嗏偓闁挸鐥夌紒蹇毿�閵嗏偓婢堆冾劅鐠佽尪顔�閵嗏偓娑擃厼鐒婄拋鎻掔秿閵嗏偓鐎涙繄绮″▔銊ㄐ�閵嗏偓閺嶈壈鈻堥懕鏃傛導閵嗏偓娴硷妇鎮婇悽鐔告た閵嗏偓鐎瑰爼顥撶€规儼顔�閵嗏偓閼匡拷 閺嶏拷 鐠嬶拷閵嗏偓娣囷拷 鐎碉拷 濞夛拷閵嗏偓娴滃棗鍤掗崶娑滎唲
正文 < 材料科学 < 百科全书 < 首页 :当前 
閻╋拷 閸忥拷 娑擄拷 妫帮拷 閻╋拷 瑜帮拷
鐠侀缚顕�鐎涚喎鐡�閵嗏偓娑擃厼鐒�婢堆冾劅閵嗏偓閺勬挾绮¢弬鍥у
閸氭稑鐡欐稊瀣壕閵嗏偓閻炲棗顒熻箛鍐劅閵嗏偓娑擃厼鐒婇幀婵囧厒
閸樺棔鍞径褍鍓�閵嗏偓娣囶喛闊╁▔鏇☆嚔閵嗏偓鐎瑰爼顥撶€规儼顔�
閸庢帒顒熼崚婵囧赴閵嗏偓閸庢帒顒熸稉顓濇叏閵嗏偓閸庢帒顒熷ǎ杈┾敀
閸庢帗鏆€閸濇彃顒�閵嗏偓閸庢帒顒熼崗鍛婃櫊閵嗏偓鐎涙繃鍊㈣箛鐘变繆
妫版粍鐨€规儼顔�閵嗏偓鐞氫焦鐨稉鏍瘱閵嗏偓婢跺嫪绗橀幃顒勬殔
鐠侀缚顕㈤崚顐ヮ梿閵嗏偓鐎涚喎鐡欓弮渚€鈧拷閵嗏偓婢堆冾劅瀵邦喛鈻�
閸涖劍妲楃粋鍛靶�閵嗏偓鐎瑰妲戦悶鍡楊劅閵嗏偓闂冭櫕妲戣箛鍐劅
娑擃厼鐒婄拋鑼额唶閵嗏偓鐠侀缚顕㈤梿鍡樻暈閵嗏偓鐢摜銇滄稉鎹愵洣
鐎涙柨鐡欑€规儼顕�閵嗏偓鐎涙繄绮$憴锝夊櫞閵嗏偓娣囨繆闊╃粩瀣嚒
缁辩娀顥ら崑銉ユ倣閵嗏偓娣囶喚顩存穱婵嗘嚒閵嗏偓鐎涙繀绗岄幋鎺撳竼
閺€鍓ф晸闂傤喚鐡�閵嗏偓閺€鍓ф晸瀵偓缁€锟�閵嗏偓閻濆秶鍩嶉悽鐔锋嚒
閺傚洤顒熼弫鍛皑閵嗏偓閺嬫绔婚悳鍕肠閵嗏偓鐎规鏆€閺佸懍绨�
閸濊尙鎮婇弫鍛皑閵嗏偓閻╁﹥娅ら弫鍛皑閵嗏偓缂囧骸鐥夐弫鍛皑
鐎硅泛娑垫穱婵嗕淮閵嗏偓閸嬨儱鎮嶆稊瀣壕閵嗏偓閸ユ稑顒滈崗鑽ゆ晸
韫囧啰鎮�閼奉亞鏋�閵嗏偓閻ゅ墽姊�妞嬬喓鏋�閵嗏偓缁岀繝缍�閹稿鎳�
缂囧骸顔�閻︼箒闊�閵嗏偓閸嬨儴闊�缁夋ḿ鐫�閵嗏偓閼哄崬宕�閻у墽顫�
閸斿崬绻旀禍铏规晸閵嗏偓閺冨懏鐖�鐡掞綀鐨�閵嗏偓鐏炲懎顔嶇€规繂鍚€


面向未来的先进超级陶瓷材料
来源:世界科技百科 专题: ( 鐎涙褰�: 閸楋拷閵嗏偓閸楋拷 )

陶瓷是一种古老的制品,它是由粘土或粘土加入石英和长石等的混合物经成形、干燥和焙烧而成的.在遥远的石器时代,原始人就在篝火上烧制出第一批陶器。

灿烂的中华文明和陶瓷关系密切.六千多年前的西安半坡村人普遍使用尖底汲水陶罐;五千多年前的仰韶文化时期出现了陶制纺轮和彩陶;四千多年前的龙山文化时期已采用了快轮制陶技术,制成了闻名中外的黑陶.有的黑陶表面光亮,厚度仅1-2 毫米,称为蛋壳陶;秦始皇陵出土的大批陶兵马涌,制作之精美,气派之宏伟,被认为举世无双;唐代的“唐三彩”陶瓷至今还为人们所喜爱.五代时期我国的陶瓷技术已登峰造极了,这时生产的陶器被誉为“青如天,明如镜,薄如纸,声如磐”.以后的历代名窖产品数不胜数,在一些国家词汇中,中国和陶瓷是同一个词“China”.中国的陶瓷于九世纪传至非洲东部和阿拉伯,13 世纪传至日本,15 世纪传至欧洲,对世界文化有很大的影响。

陶瓷的基本成分是铝硅酸盐,由于天然原料带有杂质,使陶瓷的一些性质受到损害.后来科学家用不含硅酸盐的天然原料,成功研制了性能更优越的陶瓷,从而出现了不含硅的崭新一代陶瓷,也叫现代陶瓷.常见的品种有二氧化物、氮化物、碳化物陶瓷及硼化物陶瓷等等.为了改善陶瓷的脆性和增加强度,人们又在陶瓷基体中添加金属纤维和无机纤维,组成复合材料,其中有的强度已经超过每平方厘米可承受一万千克的力,成为陶瓷材料的佼佼者。

碳化硅和氮化硅又被称为精细陶瓷材料,它们克服了一般陶瓷的致命弱点——脆性,有很高的韧性、塑性和耐磨性,并在高温下具有较高的耐热性,经几百次骤冷骤热试验不会产生破裂,抗冲击能力也比一般氧化物陶瓷强.目前,精细陶瓷材料主要使用在尖端工业上,如微电子、核反应堆、航天、地热和磁流体发电、人工骨和人工关节等方面,由于工作环境原因,对其质量要求很严.精细陶瓷材料应满足以下三方面的要求: 精选的原料——为了充分发挥功能,要选用高纯度的原料,颗粒要尽可能细;严格控制的化学成分——在制造时注意防止杂质混入和成分本身挥发.对烧结件的颗粒粒度、界面、气孔等要严格控制,以达到质量稳定和具有再现性;精确的形状和尺寸——精细陶瓷制件一般不经加工,直接使用,特别是陶瓷电子器件要求精度更高.例如,1982年日本进行了世界首次陶瓷柴油机的汽车试验,效果很好.采用精细陶瓷材料制造汽车发动机,可提高效率45%,节油30%.把陶瓷粉与金属末混匀,经高温烧结,就得到了金属陶瓷,它兼有金属和陶瓷的特点,韧而不脆,硬而耐热.例如含20%钴粉的金属陶瓷是制造火箭喷口的材料.在高温中,陶瓷中的金属首先蒸发掉,热量被带走,温度随着降低,因而能在高温环境里工作.例如,美国“哥伦比亚”号航天飞机的外壳,便是由31,000 块金属陶瓷瓦片铺砌而成,经受了返回大气层时所产生的白热化高温的严竣考验。

高铝陶瓷是有名的“硬骨头”,用它作机器上的耐磨器件,其耐磨性能比金属高2-3 倍.至于刚玉瓷、氮化硼陶瓷制成的瓷刀,更能“削铁如泥”.类似的例子还很多,无怪乎专家们预言: 人类将“重返”石器时代,不过这是一个全新的“石器时代”.在本世纪最后十年和下世纪初,陶瓷科学将实现从先进陶瓷到纳米陶瓷(晶体颗粒大小为10-100nm)的飞跃.近些年来陶瓷科学的飞速发展为这一突破打下了良好的基础,而现代技术的发展则为这一突破提供了强有力的支持.电子显微镜,包括扫描电子显微镜和透射电子显微镜的推广应用,特别是近年来高分辨电镜和分析电镜技术的发展,使人们有可能进入到纳米量级线度上来研究材料的组成和结构.现在人们已能直接观察到晶粒以及晶粒中的缺陷,从而为纳米结构的形成和控制研究提供了保证.当然,陶瓷科学家还需要在诸如纳米粉体的制备、成型、烧结等许多方面进行大量艰苦、细致的攻关,才能最终突破这一难关,实现陶瓷发展中的新飞跃。

下页:材料的发展趋势


| 閻楀牊娼堟竟鐗堟 | 閸欏鍎忛柧鐐复 | 鐠佸彞璐熸#鏍€� | 閸旂姴鍙嗛弨鎯版 | 閻f瑨鈻堝楦款唴 | 閸忓厖绨張顒傜彲 |
閼割剝瀚㈡禍铏规晸缂冩嚙鐤焽閼汇儱顕遍懜锟� 閻楀牊娼堥幍鈧張锟�
Copyright © 2023 mifang.org All rights reserved.
鏉堢祤CP婢讹拷05000881閸欙拷-1