缂傚啯鍨归悵顖涳純閺嶎厹鈧拷 闁稿繈鍔庨悵顖炲箹濠婂懎鍋� 闁哄倸娲ㄩ悵鐑藉箳閵娿劌绀� 濞村吋鍨垮Λ浠嬪棘閸ャ劍鍠� 妤犵偘绮欑划顖炲箹閻愮數鎳� 闁汇垻鍠愬鍧楁倷鐟欏嫭妯� 濞村吋鍨垮Λ鑺ョ箾閸欐ḿ顔� 缂傚啯鍨归悵顖炲捶閺夋寧绂� 缂佽绶氶悵銊︾▔椤撶喐鐎�闁靛棌鍋�
 
闁稿孩甯婃禍鎺撶┍椤斿潡鐓� 闁稿孩甯掗鐔煎礆濠靛洤璧� 闁稿孩甯掗鐔非庢潏鈹炬晙 缂佽京濞€椤ャ倝宕戦妷銉﹀€� 闁瑰瓨甯楀ḿ鍐绩閸撗勬櫢 闁煎壊鍓濈€氥垺绂嶉搹瑙勬櫢 闁稿鍎遍幃宥嗙▕閿斿墽娼� 闁哥姴瀚崝鐔煎箳閵娿劌绀� 闁稿繗宕甸弫鎾寸▕鐎n喕澹�
閻犱線缂氶銏㈡媼閼奸娲�闁靛棌鍋�閻庢稓鍠庨悺娆撳籍娓氣偓閳ь剨鎷�闁靛棌鍋�闂侇剚鎸搁惀澶岀磼韫囨锟�闁靛棌鍋�濠㈠爢鍐惧妳閻犱浇灏锟�闁靛棌鍋�濞戞搩鍘奸悞濠勬媼閹绘帞绉�闁靛棌鍋�閻庢稒绻勭划鈥斥枖閵娿剱锟�闁靛棌鍋�闁哄秷澹堥埢鍫ユ嚂閺冨倹灏�闁靛棌鍋�濞寸》濡囬幃濠囨偨閻斿憡銇�闁靛棌鍋�閻庣懓鐖奸ˉ鎾垛偓瑙勫劶椤旓拷闁靛棌鍋�闁煎尅鎷� 闁哄稄鎷� 閻犲鎷�闁靛棌鍋�濞e浄鎷� 閻庣鎷� 婵炲鎷�闁靛棌鍋�濞存粌妫楅崵鎺楀炊濞戞粠鍞�
正文 < 时间奥秘 < 休闲文摘 < 首页 :当前 
闁烩晪鎷� 闁稿骏鎷� 濞戞搫鎷� 濡府鎷� 闁烩晪鎷� 鐟滃府鎷�
閻犱線缂氶锟�閻庢稓鍠庨悺锟�闁靛棌鍋�濞戞搩鍘奸悞锟�濠㈠爢鍐惧妳闁靛棌鍋�闁哄嫭鎸剧划锟犲棘閸パ冾嚙
闁告碍绋戦悺娆愮▕鐎n喕澹�闁靛棌鍋�闁荤偛妫楅鐔荤疀閸愵煈鍔�闁靛棌鍋�濞戞搩鍘奸悞濠囧箑濠靛洤鍘�
闁告ê妫旈崬顒佸緞瑜嶉崜锟�闁靛棌鍋�濞e浂鍠涢棅鈺佲枖閺団槅鍤�闁靛棌鍋�閻庣懓鐖奸ˉ鎾垛偓瑙勫劶椤旓拷
闁稿孩甯掗鐔煎礆濠靛洤璧�闁靛棌鍋�闁稿孩甯掗鐔哥▔椤撴繃鍙�闁靛棌鍋�闁稿孩甯掗鐔非庢潏鈹炬晙
闁稿孩甯楅弳鈧柛婵囧絻椤掞拷闁靛棌鍋�闁稿孩甯掗鐔煎礂閸涘﹥娅�闁靛棌鍋�閻庢稒绻冮崐銏g疀閻樺彉绻�
濡増绮嶉惃顒傗偓瑙勫劶椤旓拷闁靛棌鍋�閻炴矮鐒﹂惃顒佺▔閺嶎剙鐦�闁靛棌鍋�濠㈣泛瀚粭姗€骞冮鍕當
閻犱線缂氶銏ゅ礆椤愩儺姊�闁靛棌鍋�閻庢稓鍠庨悺娆撳籍娓氣偓閳ь剨鎷�闁靛棌鍋�濠㈠爢鍐惧妳鐎甸偊鍠涢埢锟�
闁告稏鍔嶅Σ妤冪矉閸涢澏锟�闁靛棌鍋�閻庣懓顑嗗Σ鎴︽偠閸℃鍔�闁靛棌鍋�闂傚啳娅曞Σ鎴g疀閸愵煈鍔�
濞戞搩鍘奸悞濠勬媼閼奸鍞�闁靛棌鍋�閻犱線缂氶銏ゆ⒖閸℃ɑ鏆�闁靛棌鍋�閻㈩垰鎽滈妵婊勭▔閹规劦娲�
閻庢稒鏌ㄩ悺娆戔偓瑙勫劶椤曪拷闁靛棌鍋�閻庢稒绻勭划锛勬喆閿濆娅�闁靛棌鍋�濞e洦绻嗛棅鈺冪博鐎n亝鍤�
缂佽京濞€椤ャ倝宕戦妷銉﹀€�闁靛棌鍋�濞e浂鍠氶々瀛樼┍濠靛棙鍤�闁靛棌鍋�閻庢稒绻€缁楀矂骞嬮幒鎾崇
闁衡偓閸撗勬櫢闂傚偆鍠氶悺锟�闁靛棌鍋�闁衡偓閸撗勬櫢鐎殿喒鍋撶紒鈧敓锟�闁靛棌鍋�闁绘繂绉堕崺宥夋偨閻旈攱鍤�
闁哄倸娲ら鐔煎极閸涱剛鐨�闁靛棌鍋�闁哄顨嗙粩濠氭偝閸曨垱鑲�闁靛棌鍋�閻庤顨嗛弳鈧柡浣告噸缁拷
闁告繆灏欓幃濠囧极閸涱剛鐨�闁靛棌鍋�闁烩晛锕ュ▍銈夊极閸涱剛鐨�闁靛棌鍋�缂傚洤楠搁惀澶愬极閸涱剛鐨�
閻庣娉涘☉鍨┍濠靛棔娣�闁靛棌鍋�闁稿鍎遍幃宥嗙▕鐎n喕澹�闁靛棌鍋�闁搞儲绋戦婊堝礂閼姐倖鏅�
闊洤鍟伴幃锟�闁煎浜為弸锟�闁靛棌鍋�闁汇倕澧藉锟�濡炲鍠撻弸锟�闁靛棌鍋�缂佸瞼绻濈紞锟�闁圭ǹ顦伴幊锟�
缂傚洤楠搁锟�闁伙讣绠掗棅锟�闁靛棌鍋�闁稿鍎撮棅锟�缂佸岣块惈锟�闁靛棌鍋�闁煎搫宕畷锟�闁谎冨⒔椤拷
闁告柨宕换鏃€绂嶉搹瑙勬櫢闁靛棌鍋�闁哄啫鎳忛悥锟�閻℃帪缍€閻拷闁靛棌鍋�閻忕偛鎳庨宥団偓瑙勭箓閸氣偓


自然界趋向平衡
来源:生活百科全书 专题:霍金的逆转时间 ( 閻庢稒顨呰ぐ锟�: 闁告鎷�闁靛棌鍋�闁告鎷� )

不考虑太阳和月亮的运行,也不考虑我们的意识,"时间"可以用我们身边变化着的事物来定义。

比如,在坡路上有一只皮球,它将会顺着坡滚下去,那么皮球的位置就相当于一只钟的作用,地球表面附近的自由落体也同样,还可以举出许多例子,象水在压力作用下流过管道、导线两端的电位差引起电流等等.在这些例子里,物体(物质)的移动都是单向的不可逆转的。

为什么物体会下落呢?(你也可以说这是理所当然的事情)如果物体处于势能能够自由减少的状态时(不是在架子上,而是在空中),它就有使势能立刻减少的倾向.在落下过程中,势能转变为动能,最后落到地面上时动能又转化为热能。

相比之下,因为与压力和电压有关,水管及电流的例子显得要复杂一些.在水管的例子里,贮水罐中的水位(位势能)随着时间的推移而降低;在电流的例子里,由于导线中的电阻而使电能转变为热能.这些例子都有一个共同点,就是各种状态只能沿着特定的方向变化。

把金属棒的一端靠在热的物体上,而将另一端靠在冷的物体上时,你就会发现热量总是从热的一方传向冷的一方.热传导定律所揭示的正是这个规律。

热量从高温处转移到低温处,在这个过程中虽然没有能量的损失,但是关键在于高温热源被冷却,低温热源被加热,自然界的秩序总是朝着平衡的方向演变。

所谓高温,对固体或液体来说,指的是其原子或分子的振动较为激烈,对气体来说,则是指分子的速度(动能)的平均值较高.于是,当用某种方法(如前面提到的金属棒)将高温与低温相连接时,速度快的分子就会与速度慢的分子混合,朝着平均化过渡。

物体下落过程中势能在降低,自然界有积极地朝这个方向演化的趋势.与此相比,不同温度的平均化过程却似乎有些消极,在这个过程里没有能量的得失.单纯地从能量的角度来看,似乎从低温处传到高温处也没有什么不可以,但实际上绝对没有这样的事情发生。

热传导之类的与能量得失无关的物理现象叫做不可逆过程.热力学第一定律指出,包括热能、机械能在内的能量的总和是恒定不变的,热力学第二定律则指出,不可逆过程是不能逆转的。

热力学第二定律告诉我们,自然界中的分子(速度快的分子与速度慢的分子)只会相互混合得越来越均匀,而永远不会自动区分开。

人类把混合的状态用数学来表述,称其为熵.混合得越均匀,熵也就越大.自然界在不受限制的状态下,熵将变得越来越大。

把1 万张扑克牌铺到地上,开始全部使牌的正面朝上,这是最有秩序的状态(从数学观点看这样的排列方法只有一种),此时的熵最小.□图6-1 风一阵阵地吹过……

最后正、反面各有5000 张

一阵风吹过……,假如有1 张牌被吹翻,状态稍微乱了点(排列方法有1 万种).被吹翻的牌增加到了2 张、3 张、……正、反面牌的张数不断变化下去时,熵越来越大.最终的状态是5000 张牌正面朝上、另外5000张牌反面朝上,这种状态的熵最大。

这时再有风吹来时,尽管又有许多牌翻了面,但从整体看来,正、反面各有5000 张的事实却没有改变.所以在这个例子里熵不断增大,达到最大值(饱和)后稳定下来。

下页:普里戈津的时间


| 闁绘鐗婂ḿ鍫熺珶閻楀牊顫� | 闁告瑥顑嗛崕蹇涙煣閻愵剙澶� | 閻犱礁褰炵拹鐔革純閺嶎厹鈧拷 | 闁告梻濮撮崣鍡涘绩閹増顥� | 闁伙絾鐟ㄩ埢鍫濐嚈妤︽鍞� | 闁稿繐鍘栫花顒勫嫉椤掑倻褰� |
闁煎壊鍓濈€氥垺绂嶉搹瑙勬櫢缂傚啯鍤欓悿顖氱劷闁兼眹鍎遍閬嶆嚋閿燂拷 闁绘鐗婂ḿ鍫ュ箥閳ь剟寮甸敓锟�
Copyright © 2023 mifang.org All rights reserved.
閺夊牏绁P濠㈣鎷�05000881闁告瑱鎷�-1